Gene set enrichment analysis (GSEA) of my microarray dataset implicated a number of KEGG pathways. I’m now exploring ways to create figures summarising the findings. In my last post I described mapping the core implicated genes (leading edge subset) from the analysis onto KEGG pathway diagrams. Although useful when interpreting the data, these figures are difficult to take in at a glance. In the figure below I’ve attempted to provide a stylized adaptation of the KEGG pathways to convey that many of the leading edge genes are involved in acetyl-CoA production feeding into the citrate cycle. It’s still not quite right, but getting there!
Showing posts with label Gene set enrichment analysis. Show all posts
Showing posts with label Gene set enrichment analysis. Show all posts
Sunday, 12 July 2015
Tuesday, 2 June 2015
Analyzing pathway expression using GSEA
For my first study I profiled gene expression in the retina/RPE/choroid using microarray and analyzed the resulting data-sets using Gene Set Enrichment Analysis (GSEA). GSEA evaluates genome-wide expression profiles to determine whether classes of genes (gene sets) are over-represented. These gene sets are based on a priori knowledge, such as KEGG pathways. GSEAs strength lies in its ability to identify subtle changes distributed across a transcript network that may be missed by more traditional single-gene analyses approaches. This approach can unify results across seemingly disparate related data-sets, which is valuable in a research area like mine where relatively few similarities have been identified across the transcriptome-wide studies conducted to date. On a practical level, the results of GSEA are also more interpretable than large lists of individual differentially-expressed genes as they are based in an established biological framework.
When I first started using GSEA to evaluate my dataset our lab had a subscription to Pathway Studio. The Pathway Studio implementation was easy to use and had great graphics; unfortunately our licence expired before I was finished. I switched to the Broad Institute’s GSEA software using the graphical java interface. I’m now glad I was forced to move to a freeware platform, as I think the Broad software gave me greater control of the analysis and the ability to explore the results in more depth.
The Broad GSEA wiki provides a useful over-view of how to use the application. I found that leading edge analysis was a particularly important tool when interpreting results. This analysis identifies the core genes responsible for enrichment of a gene set, and over-lap in these genes across enriched pathways.
When I first started using GSEA to evaluate my dataset our lab had a subscription to Pathway Studio. The Pathway Studio implementation was easy to use and had great graphics; unfortunately our licence expired before I was finished. I switched to the Broad Institute’s GSEA software using the graphical java interface. I’m now glad I was forced to move to a freeware platform, as I think the Broad software gave me greater control of the analysis and the ability to explore the results in more depth.
The Broad GSEA wiki provides a useful over-view of how to use the application. I found that leading edge analysis was a particularly important tool when interpreting results. This analysis identifies the core genes responsible for enrichment of a gene set, and over-lap in these genes across enriched pathways.
Subscribe to:
Posts (Atom)